Assignment 8

Coverage: 16.1, 16.2 (most) in Text.
Exercises: 16.1 no $12,13,15,21,25,27,29,34$. 16.2 no $11,16,20,24,25$.
Hand in 16.1 no 15, 25, 16.2 no 20, 24 by March 15.

Supplementary Problems

1. Let \mathbf{r}_{1} and \mathbf{r}_{2} be on $[a, b]$ and $[\alpha, \beta]$ respectively that describe the same curve C. It has been shown that there exists some φ maps $[a, b]$ one-to-one onto $[\alpha, \beta], \varphi^{\prime}(t)>0$, such that $\mathbf{r}_{2}(\varphi(t))=\mathbf{r}_{1}(t)$ when both parametrization runs in the same direction. When they runs in different direction, $\varphi^{\prime}(t)<0$. Using this fact to prove that when $\varphi^{\prime}(t)>0$,

$$
\int_{a}^{b} \mathbf{F}\left(\mathbf{r}_{1}(t)\right) \cdot \mathbf{r}_{1}^{\prime}(t) d t=\int_{\alpha}^{\beta} \mathbf{F}\left(\mathbf{r}_{2}(\tau)\right) \cdot \mathbf{r}_{2}^{\prime}(\tau) d \tau
$$

When $\varphi^{\prime}(t)<0$,

$$
\int_{a}^{b} \mathbf{F}\left(\mathbf{r}_{1}(t)\right) \cdot \mathbf{r}_{1}^{\prime}(t) d t=-\int_{\alpha}^{\beta} \mathbf{F}\left(\mathbf{r}_{2}(\tau)\right) \cdot \mathbf{r}_{2}^{\prime}(\tau) d \tau
$$

